Dehydroepiandrosterone sulphate reduces chronic hypoxic pulmonary hypertension in rats.

نویسندگان

  • V Hampl
  • J Bíbová
  • V Povýsilová
  • J Herget
چکیده

Pathogenesis of pulmonary hypertension includes vascular smooth muscle cell membrane depolarisation and consequent calcium influx. Usually, calcium-gated potassium channels are activated under such conditions and repolarise the membrane. However, in pulmonary hypertension they are downregulated. The authors hypothesised that pharmacological augmentation of these channels would reduce pulmonary hypertension. Dehydroepiandrosterone sulphate (DHEA-S, 0.1 mg x mL(-1)), a recently characterised activator of calcium-gated potassium channels, was given to rats in drinking water. Pulmonary arterial blood pressure, increased by 4 weeks of hypoxia (from 15 +/- 0.2 to 29.4 +/- 2.5 mmHg), was selectively attenuated in rats treated with DHEA-S for the whole duration of the hypoxic exposure (23.9 +/- 0.9 mmHg) and in rats given DHEA-S only after pulmonary hypertension had fully developed (last 2 weeks of hypoxia; 24.4 +/- 1.4 mmHg). Pulmonary vascular remodelling and right ventricular hypertrophy associated with pulmonary hypertension were also reduced by DHEA-S. Cardiac index and systemic arterial blood pressure did not differ among the groups. The authors conclude that treatment with an activator of calcium-gated potassium channels, dehydroepiandrosterone sulphate, known to be well tolerated by humans, reduces hypoxic pulmonary hypertension in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension.

OBJECTIVE It has been reported that dehydroepiandrosterone is a pulmonary vasodilator and inhibits chronic hypoxia-induced pulmonary hypertension. Additionally, dehydroepiandrosterone has been shown to improve systemic vascular endothelial function. Thus, we hypothesized that chronic treatment with dehydroepiandrosterone would attenuate hypoxic pulmonary hypertension by enhancing pulmonary arte...

متن کامل

Hypoxia and dehydroepiandrosterone in old age: a mouse survival study

BACKGROUND Survival remains an issue in pulmonary hypertension, a chronic disorder that often affects aged human adults. In young adult mice and rats, chronic 50% hypoxia (11% FIO2 or 0.5 atm) induces pulmonary hypertension without threatening life. In this framework, oral dehydroepiandrosterone was recently shown to prevent and reverse pulmonary hypertension in rats within a few weeks. To eval...

متن کامل

Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension.

Pulmonary artery (PA) hypertension was studied in a chronic hypoxic-pulmonary hypertension model (7-21 days) in the rat. Increase in PA pressure (measured by catheterism), cardiac right ventricle hypertrophy (determined by echocardiography), and PA remodeling (evaluated by histology) were almost entirely prevented after oral dehydroepiandrosterone (DHEA) administration (30 mg/kg every alternate...

متن کامل

Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension.

Current therapy of pulmonary arterial hypertension (PAH) is inadequate. Dehydroepiandrosterone (DHEA) effectively treats experimental pulmonary hypertension in chronically hypoxic and monocrotaline-injected rats. Contrary to these animal models, SU5416/hypoxia/normoxia-exposed rats develop a more severe form of occlusive pulmonary arteriopathy and right ventricular (RV) dysfunction that is indi...

متن کامل

Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension.

Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2003